Technology of precision diffusion welding in precise instrument engineering

A.G.Scherbak, V.G.Kedrov

166 p.

Saint-Petersburg, CSRI "Elektropribor", 1997

ISBN 5-900780-14-7

The principles and methodology are stated for the systems engineering of precision vacuum diffusion welding as a process component for developing objects of new technology. The technical solutions obtained on this basis are described, including techniques, methods, equipment facilities and algorithms for the welding technology design.

The book is intended for engineers and scientists engaged in precise instrument engineering.

CONTENTS

Introduction	3
Chapter 1. Precision vacuum diffusion welding as a means forrealization of permanent assemblies of precise instrument engineering joints (PIEJ)	7
1.1. Permanent assemblies in PIEJ	-
1.2. Characteristics and features of construction materials	12
1.3. Welding features of materials used in PIEJ	18
1.4. Block diagram for solving problems of precision vacuum diffusion welding (PVDW)	¹ 27
Chapter 2. PVDW technology design	34
2.1. System of problem solution models for developing PVDW technology	-
2.2. Multilevel iterative method for precision welding process development	50
2.3. Information-logical model for PVDW technology designing	58
Chapter 3. Theory and technological fundamentals for PVDW process	68
3.1. Investigation of control principles for PVDW thermomechanical parameters and factors	69
3.1. Investigation of control principles for PVDW thermomechanical parameters and factors3.2. Development of PVDW process with regulated load of external drive and under thermal tightness pressure	69 74
 3.1. Investigation of control principles for PVDW thermomechanical parameters and factors 3.2. Development of PVDW process with regulated load of external drive and under thermal tightness pressure 3.3. Development of initial conditions and estimation criteria for assembly formation possibility 	669 74 87
 3.1. Investigation of control principles for PVDW thermomechanical parameters and factors 3.2. Development of PVDW process with regulated load of external drive and under thermal tightness pressure 3.3. Development of initial conditions and estimation criteria for assembly 	669 74 87
 3.1. Investigation of control principles for PVDW thermomechanical parameters and factors 3.2. Development of PVDW process with regulated load of external drive and under thermal tightness pressure 3.3. Development of initial conditions and estimation criteria for assembly formation possibility 3.4. Software and design procedure for process of wire intermediate layers 	669 74 87
 3.1. Investigation of control principles for PVDW thermomechanical parameters and factors 3.2. Development of PVDW process with regulated load of external drive and under thermal tightness pressure 3.3. Development of initial conditions and estimation criteria for assembly formation possibility 3.4. Software and design procedure for process of wire intermediate layers formation 	669 74 87 897

4.3. Welding module with combined pressure	113
4.4. Set for multiposition PVDW with thermal tightness pressure	115
4.5. PVDW module for thin-walled hemispherical shells	117
Chapter 5. Technology development and practical PVDW realization when	120
producing joints for precise instrument engineering	
5.1. Assembly units of gyro devices	-
5.1.1. Beryllium rotors of electrostatic gyro	-
,	141
5.1.3. Joints and elements for spherical gyro with gas aerodynamic suspension,	153
floated gyro and gravimeter core	
5.2. Products of ionizing radiation technique	154
5.3. Joints with long-length capillary channels for products of analytical instrument engineering	157
	159
	160
V.E. Dzhashitov, V.M. Pankratov / Under the general editorship of the RAS Academi V.G. Peshekhonov	cian
150 p.	

Mathematical models of classical and promising gyroscopic inertial data sensors of various physical principles and laws of operation have been considered. Principles of operation and dynamics fundamentals of thermally disturbed inertial gyroscopic sensors, devices and systems based on them are stated. Mathematical models of thermal drift of float, dynamically tuned, electrostatic non-contact, wave solid-state, micromechanical and fiber-optic gyros have been constructed and investigated. Particular attention has been given to the new mathematical models of thermal drift making it possible to investigate the phenomenon of deterministic chaos in non-linear thermally disturbed dynamic systems with inertial sensors.

The book is intended for scientists, engineers and technicians. Also it can be useful for post-graduates and students of higher education institutes.

Bibliography: 16 references. 34 illustrations. 1 table.

St. Petersburg: SRC of Russia - CSRI "Elektropribor", 2001

ISBN 5-900780-30-9

Introduction

CONTENTS

5

	•
Chapter 1. Models of bound physical processes of mechanical motion,	10

heat-mass exchange, thermoelasticity, hydromechanics and optics for sensors of various principles of operation

1.1. Problems of mathematical models construction and their solution		
strategy	-	
1.2. Mathematical models and investigation methods for thermal processes in	15	
gyroscopic sensors of inertial systems	13	
Mathematical models and investigation methods for mechanical motion		
processes in gyroscopic sensors of inertial systems	24	
1.4. Mathematical models and thermoelasticity theory methods in		
investigation of stressed and deformed state of gyroscopic sensors of inertial	27	
systems		
1.5. Mathematical models and investigation methods for hydromechanical	30	
processes in gyroscopic sensors of inertial systems	50	
1.6. Mathematical models and investigation methods for optic processes in	33	
per paths of gyroscopic sensors of inertial systems		
Chapter 2. Inertial data sensors of various physical principles of operation	38	
2.1. Float inertial sensors - principle of operation, mathematical models,		
investigation problems	-	
2.2. Rotor vibratory dynamically tuned inertial sensors - principle of operation,	48	
mathematical models, investigation problems	+0	
2.3. Electrostatic spherical inertial sensors - principle of operation,	57	

mathematical	models,	investigation	problems	

2.4. Wave solid-state inertial sensors - principle of operation, mathematical	63	
models, investigation problems	03	
2.5. Micromechanical inertial sensors - principle of operation, mathematical	74	
models, investigation problems		
2.6. Fiber-optic inertial sensors - principle of operation, mathematical models,	, 108	
investigation problems		
2.7. Systematization of mathematical models of thermally disturbed inertial	110	
sensors	118	
Chapter 3. Special construction and investigation problems of mathematical	mathematical 128	
models of thermally disturbed inertial data sensors		
3.1. Deterministic chaos in disturbed non-linear gyroscopic systems - general		
approach	-	
3.2. Deterministic chaos in thermally disturbed fiber-optic inertial sensors	139	
Conclusions	148	
References	149	